On the Cauchy problem for Dt2 − Dx(b(t)a(x))Dx
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولLectures on Cauchy Problem
No part of this book may be reproduced in any form by print, microfilm or any other means without written permission from the
متن کاملThe Cauchy Problem for Membranes
We show existence and uniqueness for timelike minimal submanifolds (world volume of p-branes) in ambient Lorentz manifolds admitting a time function in a neighborhood of the initial submanifold. The initial value formulation introduced and the conditions imposed on the initial data are given in purely geometric terms. Only an initial direction must be prescribed in order to provide uniqueness f...
متن کاملOn the Cauchy Problem for a Dynamical Euler’s Elastica
The dynamics for a thin, closed loop inextensible Euler’s elastica moving in three dimensions are considered. The equations of motion for the elastica include a wave equation involving fourth order spatial derivatives and a second order elliptic equation for its tension. A Hasimoto transformation is used to rewrite the equations in convenient coordinates for the space and time derivatives of th...
متن کاملOn the Cauchy problem for higher-order nonlinear dispersive equations
We study the higher-order nonlinear dispersive equation ∂tu+ ∂ 2j+1 x u = ∑ 0≤j1+j2≤2j aj1,j2∂ j1 x u∂ j2 x u, x, t ∈ R. where u is a real(or complex-) valued function. We show that the associated initial value problem is well posed in weighted Besov and Sobolev spaces for small initial data. We also prove ill-posedness results when a0,k 6= 0 for some k > j, in the sense that this equation cann...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Hyperbolic Differential Equations
سال: 2020
ISSN: 0219-8916,1793-6993
DOI: 10.1142/s0219891620500034